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Abstract
Artificial intelligence-enhanced electrocardio-
gram (AI-ECG) has shown promise as an inex-
pensive, ubiquitous, and non-invasive screening
tool to detect left ventricular systolic dysfunc-
tion in pediatric congenital heart disease. How-
ever, current approaches rely heavily on large-
scale labeled datasets, which poses a major ob-
stacle to the democratization of AI in hospi-
tals where only limited pediatric ECG data are
available. In this work, we propose a robust
training framework to improve AI-ECG perfor-
mance under low-resource conditions. Specif-
ically, we introduce an on-manifold adversar-
ial perturbation strategy for pediatric ECGs to
generate synthetic noise samples that better re-
flect real-world signal variations. Building on
this, we develop an uncertainty-aware adver-
sarial training algorithm that is architecture-
agnostic and enhances model robustness. Eval-
uation on the real-world pediatric dataset
demonstrates that our method enables low-cost
and reliable detection of left ventricular systolic
dysfunction, highlighting its potential for de-
ployment in resource-limited clinical settings.
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1. Introduction

Congenital heart disease (CHD) refers to structural
or functional heart abnormalities present at birth.
It is one of the most common birth defects, affect-
ing approximately 1% of live births worldwide (Van
Der Linde et al., 2011). Electrocardiogram (ECG) is
a rapid, standardized, and cost-effective tool widely
used for diagnosing cardiovascular diseases and initial
cardiac screening (Saarel et al., 2018). Existing stud-
ies have shown that Artificial intelligence-enhanced
electrocardiogram (AI-ECG) can reliably detect early
markers of cardiovascular dysfunction, including left
ventricular systolic dysfunction (LVSD) in the gen-
eral adult population (Attia et al., 2019; Naser et al.,
2024), which is commonly associated with heart fail-
ure and adverse cardiovascular outcomes.

However, AI-ECG applications in pediatric cardiol-
ogy remain largely unexplored. Pediatric ECGs dif-
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fer significantly from adult ECGs in both epidemi-
ology and characteristics, which may limit the gen-
eralizability of adult AI-ECG models (Siontis et al.,
2021). Existing work in pediatric congenital heart
disease (Mayourian et al., 2024a, 2025) requires large
amounts of labeled training data. Privacy concerns
and regulatory restrictions make data sharing chal-
lenging, and large-scale publicly available pediatric
ECG datasets are lacking. Consequently, hospitals
with limited ECG data face challenges in developing
reliable, site-specific models, highlighting the need for
models that are robust in data-scarce scenarios.
To address this challenge, this study proposes a

robust AI-ECG approach, incorporating the princi-
ples of adversarial training as shown in Figure 1. We
design an adversarial training algorithm to finetune
the existing AI-ECG model with generated adver-
sarial perturbations on the model’s most uncertain
samples (those near the model’s decision boundary).
This uncertainty-aware adversarial training focuses
the model’s learning on its most vulnerable regions.
It enables the model to learn more robust and intrin-
sic features, thereby achieving better generalization
even in low-sample scenarios. In addition, we propose
an on-manifold adversarial example generation algo-
rithm that generates perturbations constrained by
the latent data manifold learned by an autoencoder
(He et al., 2022). Compared to perturbations in the
raw signal domain, embedding-space perturbations
tend to remain closer to the manifold of physiolog-
ically plausible ECGs, leading to more realistic vari-
ations. Extensive experiments on real-world dataset
demonstrate that our model exhibits enhanced ro-
bustness and can achieve competitive performance
using only 10% of the original dataset, particularly
within some lesion subgroups (e.g., patients with
pacemakers).
In summary, our contributions are the following:

1. We introduce on-manifold adversarial perturba-
tion generation for pediatric ECGs, enabling the
synthesis of noise samples that more closely re-
semble real-world signals.

2. We propose an uncertainty-aware adversarial
training algorithm, which is not limited to spe-
cific model architectures and can be used to en-
hance model robustness under limited data con-
ditions.

3. Validation on real-world dataset shows that our
method can achieve low-cost and reliable detec-

tion for left ventricular systolic dysfunction in
pediatric patients.

2. Background and Related Work

Despite advances in congenital heart surgery and
medical treatment over the decades, CHD remains a
leading cause of mortality in newborns (Drews et al.,
2020). These conditions place a significant burden
on patients and their families, highlighting CHD as a
critical global public health issue.

Early diagnosis and management are crucial for im-
proving outcomes and quality of life for affected in-
dividual. Given the limited evidence-based therapies
for heart failure in congenital heart disease, develop-
ing preventive approaches through the accessible and
low-cost detection of early markers, such as left ven-
tricular systolic dysfunction (LVSD), is of significant
interest. LVSD is defined as a condition character-
ized by left ventricular ejection fraction (LVEF) of
less than 40%, indicating impaired ventricular con-
traction and reduced blood ejection from the left
ventricle during each heartbeat (Kemp and Conte,
2012). LVSD is associated with a >8-fold increased
risk of subsequent heart failure and nearly a 2-fold
risk of premature death (Sangha et al., 2023). Early
identification of LVSD allows for timely interventions
like medical therapy and potentially improving heart
failure symptoms and mortality (Anjewierden et al.,
2024).

Prior studies have demonstrated the potential of
AI-ECG to screen for LVSD in the general adult pop-
ulation (Attia et al., 2019; Naser et al., 2024). Re-
cently, a few studies have begun to explore the appli-
cation of AI-ECG methods for detecting ventricular
dilation and dysfunction in pediatric congenital heart
disease (Mayourian et al., 2024a, 2025). Mayourian
et al. (2025) trained a convolutional neural network
on more than 120,000 ECGs to detect left ventricu-
lar ejection fraction (LVEF) of 40% and achieve high
model performance. However, these models rely on
large-scale labeled datasets to reach high efficiency
and generalizability. This requirement creates a sig-
nificant barrier for many small hospitals, where pedi-
atric ECG data is often scarce, making it difficult to
develop reliable diagnostic models.

Although some studies have begun to enlarge ECG
datasets with data augmentation (Xu et al., 2022;
Nonaka and Seita, 2021), they usually exploited
some general augmentation techniques such as adding
Gaussian noise, which are typically developed and
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Figure 1: The overall framework of the proposed approach. It identifies “Borderline ECGs”, i.e., those near
the classification boundary, augments them with on-manifold adversarial perturbations, and trains
the model using a combination of original and adversarial samples to improve robustness.

validated on adults. Wiedeman and Wang (2024) ap-
plied adversarial training to improve the model’s re-
sistance to adversarial perturbations for adults. Such
approaches fail to account for the unique physiologi-
cal and pathological characteristics of pediatric CHD
patients. Overall, the robustness of ECG-based di-
agnostic models in low-resource pediatric settings re-
mains insufficiently studied.

3. Methods

Let X denote the set of training ECGs and Y their
corresponding labels. The training dataset can be
written as D = {(x, y)|x ∈ X, y ∈ Y}. The objective
of an AI-ECG model is to learn a predictive model
fθ : X → Y, parameterized by θ, which maps ECG
inputs to task-specific outputs.

3.1. On-Manifold Adversarial Example
Generation

The purpose of adversarial example generation is to
perturb a normal input x to generate an adversarial
example xadv = x + δ for a target model (e.g., a
LVSD detector), so that xadv preserves the semantic
of x while misleading the target model fθ into making
incorrect predictions:

fθ(x+ δ) ̸= fθ(x) (1)

The loss function of generating adversarial exam-
ples (Ladv) is:

Ladv(x, y, δ) = ℓ(fθ(x+ δ), y)− λ ∗ d(x+ δ, x) (2)

where ℓ is cross-entropy loss function and d is the reg-
ularizer to constrain the perturbation δ to not change

the original semantic of x after adding perturbation.
λ is used to balance these two losses. It was set to
0.1 by default. d can be cosine similarity function
between original ECG signal x and perturbed signal
x+ δ:

d(x+ δ, x) =
⟨x, x+ δ⟩

∥x∥2 ∥x+ δ∥2
(3)

Thus, the optimization objective of adversarial ex-
ample generation is:

max
δ

Ladv(x, y, δ) (4)

We exploit Projected Gradient Descent (PGD,
Madry et al. (2018a)) to optimize δ in Equation (4),
which iteratively maximizes the loss function based
on the gradients of the input ∇δLadv. Let Clipε de-
fine a projection back to the infinity norm ball by
clamping δ to ε. Thus,

δt+1 = Clipε(δ
t + α · sign(∇δLadv(x, y, δ

t))) (5)

where α is the learning rate. After T steps, we get
the optimal perturbation δT , which can mislead the
original prediction of x.

As in Smooth Adversarial Perturbations (Han
et al., 2020), we employ convolution to smooth the
generated signal, which takes the weighted average of
one position of the signal and its neighbors. We take
the adversarial perturbation as the parameter and
add it to the clean examples after convolving with a
number of Gaussian kernels. We denote G(s, σ) to be
a Gaussian kernel with size s and standard deviation
σ. The resulting adversarial example can be written
as a function of δ:

xadv = x+
1

M

M∑
m=1

δT ⊛G(s[i], σ[i]) (6)

3



M is the number of Gaussian kernels.
Perturbing raw ECG signals often produces phys-

iologically implausible waveforms. In contrast,
embedding-space perturbations preserve the ECG’s
semantic and structural properties, as the encoder
maps signals onto a smooth manifold and the decoder
constrains them within the distribution of plausible
patterns. To obtain latent representations of ECGs,
we pre-train an autoencoder (ViT-MAE, He et al.
(2022)) for pediatric ECGs. Instead of perturbing
the raw signal x directly (Han et al., 2020), we encode
each ECG sequence into a continuous latent represen-
tation z = Enc(x) and then apply perturbations in
z. Thus, the objective in Equation (2) becomes:

Ladv(x, y, δ) = ℓ(fθ(Dec(Enc(x) + δ)), y)

−λ ∗ d(Dec(Enc(x) + δ), x) (7)

where Dec decodes a latent representation into the
original input space. Then same optimization process
with PGD is applied to optimize Ladv in Equation 7.

3.2. Uncertainty-Aware Adversarial Training

Adversarial training was designed to improve the
model’s resistance to adversarial perturbations.
Madry et al. (2018b) proposed a min-max optimiza-
tion training algorithm which formalizes robustness
enhancement problem as a saddle point problem:

min
θ

[E(x,y)∼D max
δ

Ladv(x, y, δ)] (8)

This is an inner maximization problem and an outer
minimization problem. The inner maximization
problem is a process of generating adversarial exam-
ples, aiming to find a perturbation δ that fools the
victim model most or achieves a high training loss.
The outer minimization problem then learns to im-
prove the ability of predicting under the perturba-
tions. The goal of the outer minimization problem
is to find model parameters so that the “adversarial
loss” given by the inner problem is minimized. When
the parameters θ yield a (nearly) vanishing risk, the
corresponding model is perfectly robust to attacks.
The inner maximization objective is optimized by the
adversarial perturbation generation algorithm in Sec-
tion 3.1.
Since deep models exhibit varying vulnerabilities

across different regions, we propose an uncertainty-
aware adversarial training strategy. At each train-
ing iteration, we estimate the model’s uncertainty
for all training samples and retain only those with

high uncertainty. Adversarial perturbations are then
generated on these uncertain samples to encourage
the model to attend to vulnerable regions and to
learn smoother decision boundaries. We quantify the
model’s predictive uncertainty using the entropy of
its output distribution. For an input x, let pθ(y|x)
denote the predicted probability over C classes. The
uncertainty U(x) is computed as:

U(x) = −
C∑

c=1

pθ(y = c|x) log pθ(y = c|x) (9)

Then the training samples Du for each iteration is:

Du = TopK(x ∈ D,U(x),k) (10)

Then, the final training loss function L is:

L = E(x,y)∼Du
max

δ
Ladv(x, y, δ) (11)

As the model’s parameters is optimized in each itera-
tion, the most uncertain samples and its correspond-
ing adversarial examples are also different during the
training process. This allows the training process to
continually explore additional vulnerable regions of
the model, forcing the learned decision boundary to
become smoother and ultimately leading the model
to capture more intrinsic and robust features.

4. Experiments

4.1. Dataset

We used patient data from a large children’s hos-
pital in the United States, collected up to January
2023. The patient inclusion criterion was the avail-
ability of at least one echocardiogram with a recorded
LVEF. To enrich the training set with overlapping
pathophysiology relevant to pediatric heart failure
and to broaden applicability across the heterogeneous
patient population encountered in pediatric cardiol-
ogy, we also included patients with cardiomyopathy
as well as patients without congenital heart disease.

All raw ECG signals were retrieved from the
MUSE ECG data management system (GE Health-
care, Chicago, IL, USA). CHD lesions were identified
according to the institutional Fyler coding system.
Paced patients were identified based on ECG diag-
noses of dual-chamber or ventricular pacing. ECG
recordings shorter than 10 seconds or missing lead
information were excluded. Fewer than 2% of ECGs
failed quality control, typically due to random is-
sues such as unintentionally disconnected leads. The
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Table 1: Characteristics of training and testing co-
horts (n (%)).

Training Testing

ECGs
Totals 124265 54230
Tetralogy of fallot 8980 (7.2%) 4108 (7.6%)
Cardiomyopathy 18509 (14.9%) 8082 (14.9%)
Atrial septal defect 14860 (12.0%) 6171 (11.4%)
Complete atrioventricu-
lar canal

2640 (2.1%) 1130 (2.1%)

Coarctation of the aorta 12353 (9.9%) 4998 (9.2%)
Double outlet right ven-
tricular

2720 (2.2%) 1042 (1.9%)

D-loop TGA 4313 (3.5%) 1982 (3.7%)
Ebstein 1481 (1.2%) 676 (1.2%)
Hypoplastic left heart
syndrome

4050 (3.3%) 1689 (3.1%)

L-loop TGA 1191 (1.0%) 399 (0.7%)
Pulmonary atresia 3994 (3.2%) 1808 (3.3%)
Total anomalous pul-
monary venous return

1463 (1.2%) 758 (1.4%)

Tricuspid atresia 1117 (0.9%) 358 (0.7%)
Truncus arteriosus 1461 (1.2%) 548 (1.0%)
Ventricular septal defect 21171 (17.0%) 8926 (16.5%)
Dextrocardia 1265 (1.0%) 403 (0.7%)
Pacemaker 2732 (2.2%) 1145 (2.1%)

Patient-level Charac-
teristics
Patients 49158 21068
Male 26311 (53.5%) 11251 (53.4%)
Female 22835 (46.5%) 9813 (46.6%)
Missing 12 (< 0.1%) 4 (< 0.1%)

Outcomes
LVEF ≤ 50% 8525 (6.9%) 3674 (6.8%)
LVEF ≤ 40% 3381 (2.7%) 1473 (2.7%)
LVEF ≤ 30% 1490 (1.2%) 598 (1.1%)

remaining ECGs were resampled to 250 Hz, high-
pass filtered, and truncated to 2048 samples (approx-
imately 8 seconds) to facilitate use with convolutional
neural networks. Each ECG has 12 leads. Additional
details of quality control and preprocessing have been
described previously (Mayourian et al., 2024b). The
training cohort comprised 124,265 ECGs (49,158 pa-
tients; median age 10.5 years (IQR 3.5–16.8); 46.5%
patients were female and 53.5% were male). The test-
ing cohort comprised 54,230 ECGs (21,068 patients;
median age 10.9 years (IQR 3.7–17.0); 46.6% patients
were female and 53.4% were male). 24.1% patients
had congenital heart disease in the overall testing co-
hort. The characteristics of the dataset are summa-
rized in Table 1.

Outcomes LVEF values were extracted from
echocardiogram reports, with the left ventricle con-
sistently corresponding to the morphological left ven-
tricle. LVEF was determined using the bullet method
(O’Dell, 2019). The primary outcome was LVEF of

40% or less (quantitatively at least moderate dysfunc-
tion). Secondary outcomes included LVEF of 50%
or less (quantitatively at least mild dysfunction) and
LVEF of 30% or less (quantitatively severe dysfunc-
tion). The reports also provide outcomes of LVEF ≤
45% and LVEF ≤ 35%. The median LVEF was 62.0%
(IQR 57.4%–66.0%) in training set and 62.0% (IQR
57.6%–66.0%) in test set, where 2.7% ECGs had an
LVEF of 40% or less.

4.2. Baselines

ResNet We use the state-of-the-art AI-ECG model
for pediatric LVSD detection as the baseline model
(Mayourian et al., 2024b). The model is based on
ResNet, a convolutional neural network originally de-
signed for image recognition, which can process ECG
signals by capturing hierarchical temporal features
through residual connections. More specifically, the
ResNet consisted of a convolutional layer followed
by 4 residual blocks with 2 convolutional layers per
block. The convolutional layers start with 64 filters
for the first layer and residual block, with a filter
increase and subsampling. The output of each con-
volutional layer is rescaled using batch normalization
and fed into a rectified linear activation unit, with
subsequent dropout at a rate of 0.2. Max pooling
and convolutional layers with filter length 1 are in-
cluded in the skip connections to match main branch
signal dimensions. The output of the last block is
fed into a fully connected layer with a sigmoid acti-
vation function given that outcomes are not mutually
exclusive.

ResNet+DA We further construct an augmented
baseline by applying data augmentation (DA) to
ResNet. Specifically, for each training sample, we
construct an augmented sample by introducing Gaus-
sian noise that stimulates the real-life noise. We
add random Gaussian noise at four real-world ECG
noise frequency ranges: 3-12 Hz (motion artifact
during tremors), 12-50 Hz (lower-frequency mus-
cle activation artifact), 50-100 Hz (electrode motion
noise), and 100-150 Hz (higher-frequency muscle ac-
tivation artifact) (Dhingra et al., 2025; Khunte et al.,
2023). Powerline interference noise is further cap-
tured within the 50-100 Hz and 100-150 Hz frequency
ranges (Friesen et al., 1990). Then ResNet is trained
with both original and augmented samples.
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4.3. Metrics

Due to data privacy concerns, it is challenging to
obtain existing pediatric ECG datasets from smaller
hospitals to validate the effectiveness of our approach.
As an alternative, we compared the performance of
the prediction model when trained on the full dataset
versus a smaller subset consisting of our data. To
emulate real-world scenarios in hospitals of varying
sizes, we randomly selected 10% of the original train-
ing set to form smaller training subsets. We apply
adversarial training described in Section 3.2 while
training and test on the whole test set. Given the
imbalanced dataset, both area under the receiver op-
erating curve (AUROC, Fawcett (2006)) and area
under the precision-recall curve (AUPRC, Saito and
Rehmsmeier (2015)) are computed to evaluate the
model’s performance.

4.4. Implementation Details

While training, we use Adam optimizer. A maxi-
mum of 100 epochs was used with early stopping on
the basis of validation loss. Final hyperparameters
were kernel size 17, batch size 64, and learning rate
0.001. For adversarial training, we keep Top K=30%
uncertain samples for each training iteration. Inner
optimization steps T is 20, α=0.001 and clamping
bound δ is 0.5. Following Han et al. (2020), s is set
to [5, 7, 11, 15, 19] and σ is [1, 3, 5, 7, 10].

To provide image-based inputs suitable for the
ViT-MAE, ECGs were transformed into spectro-
grams. Specifically, each of the 12 ECG leads was
converted using the Short-Time Fourier Transform
(STFT, Huang et al. (2019)), retaining both the real
and imaginary components of the resulting spectra.
This process yielded 24 channels per ECG recording,
which were treated as the input image channels for
the model. Since the pretrained base ViT-MAE was
originally designed for three-channel RGB images,
we adapted it to handle 24-channel spectrograms by
replicating the weights of the first convolutional pro-
jection layer across the additional channels, while
leaving the remainder of the encoder–decoder archi-
tecture unchanged. The model was then adapted to
the ECG domain via self-supervised continual learn-
ing on the spectrograms, using the mean squared er-
ror loss of the reconstructions. This strategy lever-
aged the pretrained backbone as a strong initializa-
tion, while enabling the model to progressively refine
its latent representations for ECGs.

4.5. Evaluation Results

There are 18 lesion subgroups in both training and
testing cohorts. In structural lesions, such as Coarc-
tation of the aorta or Ventricular septal defect, ECG
abnormalities (e.g., chamber hypertrophy, axis devi-
ation, repolarization changes) more directly reflect
the underlying hemodynamic burden. These lesion-
specific signatures allow AI-ECG to capture phys-
iologically meaningful features associated with im-
paired ventricular function, potentially yielding more
consistent performance. In contrast, for patients
with pacemakers, the ECG is dominated by pacing
artifacts and non-physiologic ventricular activation,
which may obscure native conduction and repolar-
ization patterns linked to ventricular function. As
a result, LVEF prediction in this cohort represents
a greater challenge, but also serves as an important
proof-of-concept for the robustness and generalizabil-
ity of AI-ECG. Thus, we present model performances
on overall cohort as well as pacemaker subgroup in
Figure 2. More evaluations across all lesions can be
found in Appendix A.

Figure 2 compares three models, ResNet,
ResNet+DA and ResNet+ADV (ours), across
varying training sizes (full and 10% data) in LVEF
outcomes with different thresholds. The performance
of “ResNet(Full data)” represents a performance
upper-bound benchmark for the task, such large-
scale data collections are rarely available in most
hospitals. Confidence intervals (CIs) were obtained
via resampling with 1000 bootstraps. 95% CIs are
shown using bootstrapping and indicated by error
bars.

We find that models trained on the full dataset
(“ResNet(Full data)”) consistently outperform those
trained on only 10% of the data (“ResNet(10%
data)”). For the overall cohort, performance de-
creased from AUROC = 0.94(0.87-0.95) to 0.88(0.82-
0.89) in predicting LVEF ≤ 40%, corresponding to
an absolute drop of 0.06 median AUROC. The de-
cline was larger for pacemaker lesion with LVEF ≤
35% or LVEF ≤ 30% , where AUROC decreased by
about 0.11 (≃16%), subgroups further complicated
by highly scare positive samples. Specifically, pa-
tients with pacemakers account for only 2.1% of the
overall cohort, representing a more data-scarce sce-
nario. In addition, compared with LVEF ≤ 40%, pa-
tients reaching LVEF ≤ 35% or ≤ 30% are even fewer,
as these thresholds reflect more severe left ventricu-
lar dysfunction. These findings highlight current AI-
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Figure 2: Model performance of ResNet, ResNet+DA (data augmentation), and ResNet+ADV (adversarial
training) on overall and pacemaker cohorts under full and 10% training data.

ECG model’s sensitivity to data scarcity and suggest
potential limitations in resource-constrained clinical
settings.
We then evaluate the effect of adversarial training

(“ResNet+ADV”). Under ideal conditions with abun-
dant training data (“Full data”), adversarial train-
ing achieves comparable or slightly improved perfor-
mance relative to the baseline models for both overall
or pacemaker cohort. In contrast, under data-scarce
settings (e.g., using only 10% of the training data),
adversarial training yields more substantial perfor-
mance gains. With adversarial training, ResNet can
achieve comparable performance with that trained
with full data: the difference of “ResNet(Full data)”
and “ResNet+ADV(10%)” is within a margin of 0.03
median AUROC across all outcomes for overall co-
hort.
The improvement is particularly significant for the

highly underrepresented pacemaker lesion. For exam-
ple, in predicting LVEF ≤ 30%, “ResNet+ADV(10%
data)” achieves an AUROC of 0.67 (0.64-0.70), sig-

nificantly outperforming “ResNet(10% data)” (AU-
ROC=0.59 (0.56-0.61)) by 0.08 and nearly match-
ing “ResNet(Full data)” (AUROC=0.69 (0.65-0.74)
with only a 0.02 difference in the median. Given that
pacemaker ECGs are dominated by pacing-induced
patterns rather than native conduction, these results
indicate that adversarial training can enhance model
robustness specifically in lesion groups with atypical
ECG characteristics. Overall, these findings demon-
strate that our approach maintains comparable or
slightly improved performance under data-rich con-
ditions, while yielding substantial gains under data-
scarce conditions.

4.6. Ablation Studies

We perform ablation experiments to evaluate the im-
pact of different components in our approach. As
shown in Table 2, compared with ResNet+ADV,
“w/o uncertainty” generates adversarial examples for
all inputs without leveraging uncertainty U(x) to se-
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Table 2: Comparison of training strategies on pacemaker subgroup. Variants share the same training frame-
work but differ in one component: “w/o uncertainty” generates adversarial examples for all samples;
“w/o on-manifold” applies perturbations directly to input ECG signals.

LVEF ≤ 50% LVEF ≤ 40% LVEF ≤ 30%
AUROC AUPRC AUROC AUPRC AUROC AUPRC

ResNet 0.58 (0.56–0.61) 0.23 (0.09-0.40) 0.64 (0.62–0.66) 0.22 (0.09-0.41) 0.59 (0.56–0.61) 0.19 (0.07-0.39)

ResNet+ADV 0.68 (0.66–0.71) 0.29 (0.14-0.47) 0.73 (0.69–0.74) 0.28 (0.13-0.46) 0.67 (0.64–0.70) 0.26 (0.09-0.46)
w/o uncertainty 0.65 (0.64–0.68) 0.26 (0.11-0.44) 0.69 (0.67–0.69) 0.23 (0.09-0.44) 0.65 (0.61–0.67) 0.25 (0.06-0.44)
w/o on-manifold 0.65 (0.63–0.69) 0.26 (0.11-0.45) 0.68 (0.66–0.69) 0.24 (0.10-0.46) 0.63 (0.62–0.65) 0.22 (0.06-0.43)

lect borderline samples. “w/o on-manifold” uses the
same adversarial example generation algorithm but
generates perturbations directly on the input ECG
signals, rather than the latent space learned via au-
toencoder.
All ablation experiments show a decrease in AU-

ROC and AUPRC compared with the full adver-
sarial model (“ResNet+ADV”), indicating that each
component contributes to enhancing the model’s ro-
bustness. Meanwhile, these ablated models still out-
perform the baseline without adversarial training
(“ResNet”), further demonstrating the effectiveness
and robustness of our proposed adversarial training
framework. Moreover, the impact of individual mod-
ules on the final performance varies: replacing the
on-manifold perturbation module with perturbations
applied directly in the ECG signal space produces the
largest performance drop, particularly in data-scarce
scenarios such as LVEF ≤ 30%. This further under-
scores the importance of generating realistic augmen-
tations to improve model robustness.

4.7. Model Explainability

Table 3: Distributional discrepancies between testing
cohorts and three training cohorts: origi-
nal training set (“Org”), adversarially per-
turbed training set (“Adv”), and a mixed
dataset combining both original and adver-
sarial samples (“Combined”).

Global Discrepancy Local Discrepancy
Center(pos) Center(neg) MMD JSD KLD

Org 0.6257 0.5623 0.0038 0.3950 8.0197
Adv 0.5721 0.4964 0.0034 0.4020 8.1413
Combined 0.5934 0.5293 0.0035 0.3290 6.1033

To better understand why adversarial training en-
hances model robustness under data-scarcity scenar-

ios, we analyzed the distributional discrepancies be-
tween the training and testing data. Intuitively, a
lower discrepancy between training and testing distri-
butions facilitates better generalization of the model.
To this end, we measured the discrepancy between
the testing data and three training scenarios: the
original training set (“Org” in Table 3), the adver-
sarially perturbed training set (“Adv”), and a mixed
dataset combining both original and adversarial sam-
ples (“Combined”). We employed two categories of
discrepancy measures to quantify both global and lo-
cal relationships between datasets in the latent space.
For global similarity, we use “Center(pos)” and “Cen-
ter(neg)”, which measure the distance between the
centroids of positive and negative class samples, re-
spectively, as well as the Maximum Mean Discrep-
ancy (MMD, Gretton et al. (2012)). MMD evaluates
the difference between two distributions by compar-
ing the mean embeddings of samples in a reproduc-
ing kernel Hilbert space, and has been widely used
for distribution alignment. For local discrepancy,
we exploit the Jensen–Shannon Divergence (JSD,
Lin (2002)) and Kullback–Leibler Divergence (KLD,
Kullback and Leibler (1951)). JSD symmetrizes and
smooths KL divergence to quantify the overlap be-
tween two probability distributions, while KLD mea-
sures the relative entropy, i.e., how one distribution
diverges from another.

As shown in Table 3, adversarial training markedly
reduces the global distributional gap between the
training and test sets, as indicated by lower center
distances and MMD values. However, it simulta-
neously introduces small bias at the local distribu-
tion level, reflected by marginally higher JSD and
KLD. In contrast, combining the original and adver-
sarial data balances these effects: the mixture sub-
stantially improves local similarity while maintaining
global alignment. This hybrid strategy leads to richer
and more diverse representations, resulting in better
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overall alignment with the test distribution. These
findings suggest that while adversarial training is ef-
fective in capturing global structures, integrating it
with original data is crucial to alleviating local distri-
butional bias and achieving more robust generaliza-
tion.

5. Conclusion and Future Work

In this work, we propose a robust training framework
to improve AI-ECG robustness in low-resource set-
tings. Our approach combines an on-manifold ad-
versarial perturbation strategy for pediatric ECGs
with an uncertainty-aware adversarial training algo-
rithm, which identifies borderline samples near the
classification boundary and augments them to en-
hance model robustness. Evaluation on real-world
pediatric datasets demonstrates reliable and cost-
effective detection of left ventricular systolic dys-
function, highlighting its potential for deployment in
resource-limited clinical environments.

As our proposed method represents an effective
training framework that is not limited to specific ar-
chitectures or tasks, it can be readily applied to other
healthcare scenarios. For example, it could be ex-
tended to Echocardiography (Echo) for assessing car-
diac function, or to more complex, multi-modal set-
tings that integrate ECG, Echo, and other cardiac-
related data. In future work, we plan to extend this
approach to a broader range of clinical tasks to fur-
ther evaluate its generalization capability. Our goal
is to establish it as a generalizable and convenient
tool that can be adopted by different institutions,
enabling the deployment of site-specific, effective AI
models and promoting the democratization of AI in
healthcare.
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Appendix A. Evaluation across all
lesions
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Figure 3: Model performance across congenital heart
disease lesion subgroups (VSD = Ventricu-
lar septal defect, COA=Coarctation of the
aorta, HLHS = Hypoplastic left heart syn-
drome, CAVC = Complete atrioventricular
canal, DORV = Double outlet right ven-
tricular, TAPVR = Total anomalous pul-
monary venous return).
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